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ABSTRACT

In many areas of mathematical physics where one is interested in the
propagation of waves through nonuniform media, it is often assumed that
periodic excitations result in periodic responses. This assumption is exa-
mined by rigorously investigating the.existence of periodic solutions of
linear hyperbolic differential equations whose coefficients vary with posi-
tion and whose solution must satisfy periodic boundary or source data. It
is shown that the nature of the coefficients of the undifferentiated terms
of the differential system is crucial in determining whether or not the
solution is periodic. In physical applications, these coefficients usually
depend on the gradients of media properties as well as on the media properties
themselves. In particular, it is shown that for a general hyperbolic system
of two equations in one space dimension, the solution is not periodic.
Moreover, this can remain true even if the media gradients are assumed small.
However, if the media gradients vanish, or if they vanish except for a
bounded region of space, the solution is shown to be periodic for a large
enough time. Furthermore, if these gradients vanish asymptotically at large
distances, then the disturbances will be asymptotically periodic for increasing
time. Special attention is given to the propagation of infinitesimal pressure

disturbances through nonuniform steady flows of a lossless fluid.
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1. INTRODUCTION

Historically, the mathematical treatment of problems in linear wave
propagation has often been aided by the assumption that periodic excitations
result in periodic responses (see, for instance, [1]-[7]). More precisely,
it is assumed that {f the excitatioms (caused by sowrces on at boundaries)
are periodic with a grequency w , then for a Large enough time, the nesponse
will also be periodic An time with a frequency w . The response frequency
w 1is supposedly independent of position. However, the time one has to wait
in order to observe the periodicity may depend on position.

Of particular interest here are those phenomena which are governed by a
system of linear hyperbolic partial differential equations whose coefficients
may vary with the space coordinates. Then the periodicity assumption results
in a great simplification: the time dependent linear hyperbolic system reduces
to a time independent linear elliptic system, i.e. the number of independent
variables have been reduced by one. It is the purpose of this work to examine
the validity of this periodicity assumption.

Certainly, for the propagation of waves in uniform media, the periodicity
assumption has been used with great success. Indeed, it can be shown (see
section 3 below) that for vanishing initial conditions, the periodicity of the
éolution is not an assumption for uniform media, but is a mathematical reality.
When waves are propagating through a nonuniform media, the coefficients of the
governing differential system depend not only on the properties of the media,
but also on their gradients. It is usually the case that media gradients enter
only into the coefficients of terms involving undifferentiated values of the

dependent variables. (Hereafter, we will refer to these coefficients as "lower

order coefficients".)




It is shown below that it is precisely these coefficients which are crucial
in determining whether or not the solution of the governing differential
system is periodic. 1In section 3 we examine the periodicity question for
the general case of the lower order coefficients being nonzero and of arbitrary
magnitude throughout the range of validity of the differential system stated
in section 2. We then examine three important physically motivated special
cases. First, in section 4, we assume that the lower order coefficients are
small (in some sense). Then, in section 5, we assume that these coefficients
either vanish everywhere except for a region near the origin, where their
magnitude may be arbitrary. In section 5 we also consider the case of the
lower order coefficients vanishing asymptotically at large distances.

In section 6 we study the implications to physical phenomena which can be
described by equations such as those presented in section 2. A detailed
account is given for one such phenomena, i.e. the propagation of infinitesimal

pressure fluctuations through nonuniform steady flows of a lossless fluid.
2. THE MATHEMATICAL PROBLEM

As a prototype governing system we examine a system of two equations with
one space-like independent variable which without loss of generality may be

written as
(b <A(x> 0 ) (¢) <X<x> §<x)) (¢) -0 . W
w) "No -e/ W/ T\Tw Dt/ \v |
t X

The mathematical problem to be considered is whether or not a system such as

(1) has periodic solutions (for some range of x and t) for some set of given



initial and (periodic) boundary and/or source conditions. Restriction is
now made to those problems for which X and o are positive. The analysis of
this work cén be carried out in a similar manner for the "supersonic" case,
i.e. A>0 and o0<0.

The system (1) can be comnsidered valid for either -wo<x<o or x>0. 1In
the first case the driver is a periodic source which introduces into the

right hand side of (1) the vector

m (%)
(n(x)> exp(iwt) . (2)

In particular, a point source located at x=a would yield m(x)=n(x)=qd (x-a)

where q is a constant. For the semi-infinite region x>0, the driver may be a
source such as (2) with an additional boundary condition at x=0. On the other
hand, the boundary condition itself may drive the problem so that (1) remains

homogeneous. 1In this work we present results for the boundary condition
¢ (x=0) = q exp(iwt) . (3)

The general results obtained are equally valid for problems driven by sources

or by more general boundary conditions of the type
$(x=0) + bY(x=0) = q exp(iwt)

Specific results for these problems can be deduced in a similar manner as those
obtained below for the boundary -condition (3).

Finally, in order to close the mathematical description of the problem,
initial conditions must be specified. 1In general, physically correct initial

conditions are not easy to define, and in fact, one of the main reasons for




looking for periodic solutions is that these would be independent of the

initial data. For the purposes 6f this work, the general initial conditions
$(t=0) = £(x) and Y(t=0) = g(x) (&)

will be used. However, the very reasonable and perhaps physically applicable
initial condition ¢=¢=0 will be kept in mind. Vanishing initial data implies
that there is no disturbance for t<0, and that the boundary or source distur-
bance is started at t=0.

Because of the linearity of the differential system and side conditions,
the problem of sources and/or boundaries and initial data can be treated
separately; for example, for a boundary/initial value problem with no source,
if ¢=¢l + ¢2, then ¢2 can satisfy homogeneous boundary data with non-
homogeneous initial data, and vice versa for ¢l.

With the introduction of the characteristic independent variables

) _dg o, _f _dt
a =t + 5 (2) and B t J;K(E) (5)
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the system (1) becomes

]
o

8, + Ala-B)¢ + Ba=B)y
(6)

1]
o

ws + C(a=B8)¢ + D(a=B)Y
since from (5) x is a function of (2-8) only. 1In (6)

(o+A\)A = Ao, (0+A\)B =Bo , (o+A\)C = Cr , and (o+A\)D = DA .

3. 'NONPERIODICITY FOR THE GENERAL SYSTEM

Before examining the nature of the solutions of the system (6), the side




conditions must be transformed into the characteristic plane. From (5)
the boundary line x=0 becomes the line a=8, and the initial line t=0 be-
comes a curve which can be given parametrically as a=h1(x) and 8=h2(x).
The origin x=t=0 transforms to a=f=0.

In this section a detailed proof is given for the non-periodicity of
solutions of the system (6) with the side conditions (3) and (4) which trans-

form to

¢ (a,B) = exp(iwt) for o=p=t

¢ (a,B) = f(x) a=hl(x) )
for

Y(a,B) = g(x) B=h, (x)

The results of this section will hold for any other combination of side condi-
tions discussed in section 2, although for side conditions other than (7) no
detailed proofs will be presented in this work.

As indicated in section 2, two sub-problems will be considered. First let

g (x=0)

¢l(a,8) = exp (iwt) for a

and (8)

]
o

¢1(G,B) = wl(a,B) =0 fo? t
where ;l’vl are solutions of the system (6). Then let

¢2(a,8) =0 for x =0

(9
¢2(a,8) = f(x) and wz(a,B) = g(x) for t =20

where ¢9,¢2 are also solutions of (6). Then ¢=¢1+¢2 and w=wl+w7 will satisfy

(6) and the side conditions (7). Note that if the initial conditions vanish,




i.e. f=g=0, then ¢2=0 so that ¢=¢1. The nonperiodicity of solutions is now
proven by contradiction.
It is clear that due to the vanishing initial data for ¢l and wl, that

¢1=w1=0 ahead of the right running characteristic passing through the origin

X
- b - _dg_ _
B =t j; NG 0

Then, on this curve (8=0) the side condition w1=0 may be.imposed. Now, solu-
tions are sought in the region O0<B<a, a>0 (see Figure 1).

The first equation of the system (6) may be interpreted as an ordinary
differential equation for ¢ as a function of o with B playing the role of a
parameter. The solution ¢1 to this ordinary differential equation is subject
to the "iﬁitial condition" ¢1(a=8) = exp (iwt). Then, formally

o o g
¢l(a,8)=exp{ _'(; A(E—B)dE}exp {in} -jf; daB(E—B)wl(E,B)eXPLg A(E'-B)dg'}. (10)
Likewise, the second equation of (6) can be thought of as an ordinary differential
equation for wl as a function of B with the "initial condition" wl(8=0)=0 where

now o can be considered to be a parameter. Then formally,

B8 n
¥y (@,B8) = - j; dnC(a-n)¢l(a,n)eXP{J; D(oc—n')dn'} : (11)

Substituting (11) into (10) yields the integral equation for ¢l

8
5,(a,8) = exp{fA(a-s)da} exp {iws}
(o}
a £ B
+f dEB(E—B)exp{_[A(E'-B)dE' fdnC(€~n)¢l(E,n)eXP‘zl.)(E-n') dn'
B (s)

(12)



The region of integration for the double integral appearing in (12) is the
quadrilateral B<g<a , O<n<B.
From (5) it is obvious that the characteristic curves of the same family

are equally spaced in time in the sense that

a(t+At)

a(t) + At

and (13)

B(t+At) B(t) + At

Then, from (12) and the fact that coefficients A, B, C and D depend on (a-B)

only, it can be shown that

8
¢1(0L+T,B+T)—¢l(ot,8) = EXP{/A(E-B)dE}eXP{in} [exp {in}-l]
(6]

o £ B n
+J dgB(e-Rlexp { fA(g"-R)a:'S 1 dnc(a—n>[¢l(a+T,n+T)—¢l(a,n)] exp}S D(g-n")dn'
B B

o o
o+T £ T n

+ J dEB(E-B-T)exp S A(g'-p-T)deg’ fdnC(E-n)¢1(£,n)eXP S D(&-n")dn'
R+T o+T o R+T

(14)

Now the periodicity assumption is made, i.e. for t>t*(x), the solution for ¢l
will be periodic in time with a period T=2rn/w where t*(x) is some curve in

space such that for any x, if t<t*(x), ¢, is not periodic. This implies that

1
t=t*(x) is the dividing curve between regions in which ¢l is periodic and non-

periodic. In characteristic coordinates the line t*(x) is given parametrically

as

Q
I

P14
e S Sw

X
t*(X) - f A—%%)

™
]




which in theory can be written as B = B*(a) (see Figure 1). The periodicity

assumption then implies that
¢, B+T,n#T) = ¢,(&,n) for n > B*(¥) . (15)

Then if B8 is chosen so that B>B*(a), which can always be accomplished by

choosing t>t*(x), equation (14) reduces to:
¢, (@+T,B+T) = ¢, (@,B8) + G(a,B;8%,T) + H(a,B;T) (16)

where

a

£
G(a, B3 B%,T) =fng(g-s)exp fA(a'—s)ds'
B A

Bk (&) n
X'/r dnC(E-n)[¢1(£+T,n+T)-¢1(€,ni]ex D(&-n') dn' 7
(o]
and B
o g 0 n
H(a,B;T)=JdsB(E-R)exp] SA(E'-R)dE’ VA dnC(E-n)¢l(£+T,n+T)eXP./'D(E—n')dn'
B o -T B
(18)

Therefore unless (G+H) vanishes the periodicity assumption (15) is contradicted,

since then
¢l(a+T,8+T) # ¢1(a,8) for B>B*(a) . _ (19)

The periodicity of ¢1 is now reduced to the question of whether or not
(G+H) can vanish. If either C or B vanish, then G=H=0, and the periodicity
assumption is not contradicted. Indeed, from (12) it is easy to see that if

B or C vanish, then ¢1 is periodic. It is also possible that G and H vanish



separately without C and B vanishing. But, for H, this would imply that the
coefficients of the differential equation depend on T=27/w, which is speci-
fied by the boundary condition, so that H in general does not vanish. In
addition, the fact that H does not vanish implies that if B*(x)=0 the solution
is not periodic, i.e. the solution for vanishing initial conditions cannot be
periodic everywhere above the leading characteristic 8=0.

There remains the possibility that G and H do not vanish, but the combina-
tion (G+H) does. If (G+H)=0 and if B # 0 and is independently specified,

then from (17) and (18)

B* (&) n B* (&) n
S dnC(g-n) ¢, (E+T,mTexpd JD(E-n")dn't = S dnC(E-n)¢, (E,n)exps SD(E-n")dn’
=T B o B

(20)

for B<&<a. Equation (20) may be thought of as a relation that defines for

each £ in the range B<&Z<a the number B*({) such that (G+H) vanishes. Note

that B*(£) will in general depend on T, which is acceptable since one can admit
different B8%*(f) values for different choices of T=2/7w. However, from (20) it
is obvious that BR*(£) will also depend on B, i.e. B*=R*(£;B). In particular,

8

if o is held fixed, and if B is varied, say from B=Bl to B=8 then in

>
27

general for any £ such that 82<€<a
B*(E;Sl) # 8*(5;62)

This implies that the assumed curve B*(a) [or t*(x)] above which ¢l was assumed
to be periodic cannot exist since for any fixed a,B* depends not only on o but -

on B which contradicts the assumption that B*=f*(a) only.

10




In a similar manner, it can be shown that wl is in general not periodic.

By substituting (10) into (11), the integral equation for wl is

Q,
wl(a,8)= —7dnC(a—n)exp[‘Z];(a-nV)dnv} [exp{ —./;(E—n)dg exp (iwn)
(8]
c
-ﬁEB(E-n)wl(E,n)eXP{.Z’:(E'-n)dE' ] (21)

Then by the same process as for ¢l, it can be shown that ¢1 is not in general
periodic. The exceptions are that if C=0, wl will be periodic. (Note that
for B=0, wl will not be periodic, although ¢l is periodic in this case.)
The conclusion is that unless C vanishes, both ¢1 and wl will not be
periodic functions of time with period 2m/w. This implies that in general
Lf therne 45 no initial disturbance, and a boundary disturbance is starnted
at t=0, then the sclutions of (6) will not settle into a periodic state.
This is important since va;ishing initial conditions are physically applicable.
The problem for ¢2 and wz essentially addresses the question of whether
there is an initial condition which, in conjunction with ¢l and wl, will
yield a periodic solution. 1If ¢2 and wz are solved for in a manner similar
to ¢1 and wl above, then it can be shown that ¢2 and wz will in general not
be periodic. However, one has to consider the possibility that although ¢l’
wl, ¢2, and wz are not periodic, the combinations (¢l+¢2) and (wl+w2) are
periodic. However, it again can be shown in a manner similar to that for ¢1
above that if ¢l and ¢2 (and likewise for y) are not periodic, then the com-
bination (¢l+¢2) is periodic only for specially chosen initial data, i.e. the
initial conditions will be functions of the boundary condition (namely functionms
of w) and/or the coefficients of the differential system. Therefore, if the
initial data isbarbitrarily specified, then ¢;¢1+¢2 and v =w1+w2 will not be

periodic.

11



Of course, there do exist initial conditions for which the solution

(¢,9) is periodic. In fact if the elliptic system

A 0 a + X+—iu) _E a) - o (22)
0 -0 b ; C D+iw b

with appropriate boundary conditions is well posed, then the initial condition

¢=a(x), P=b(x) will yield the periodic solution

() ()

Note that since (a,b) are solutions of (22), they depend on w and the co-
efficients of the differential system (1). There even may be other specially
chosen initial conditions which will yield periodic solutions for t large
enough. However, it is easy to show that if such a periodic solution does
exist, then if the initial data, the coefficients of the differential equation,
or the frequency or amplitﬁde of the boundary data are perturbed, the resulting
solution will not be periodic. For example, if (¢,y) is a periodic solution of

(1) with
(5,0 o= F.e)  and 9| _ =e

for some specially chosen (f,g), then the solution of (1) with

(9o = (F,8)  and  §| _ = (1+e)e®t

will not be periodic since the combination

@) =2 [@D-0,0]

12




satisfies (1),

@0 =0  amd '] o= elF

xX=

which has been shown above to possess a non-periodic solution.

All the other side conditions discussed in section 2 yield similar re-
sults to those for the case treated above. The results are summarized in
the following list:

1. If the coefficients B and C in (6) do not vanish, then the solution
of (6) with arbitrary initial data, and periodic boundary and/or source condi-
tions will in general not settle into a periodic state;

2. Statement 1 remains true even for the particular case of vanishing
initial data;

3. It is possible to construct special initial data which yield periodic
solutions. However, this special data will depend on the boundary and/or source
data, as well as on the coefficients of the differential system. Moreover, any
perturbation to the governing system with the special initial data will result
in a non-periodic perturbation to the solution;

4. If the coefficients B and C in (6) vanish, and the initial data vanish,
then the solution of (6) will become periodic. In fact, if the initial data is
non-zero in a compact region, the solution will eventually be periodic also,
and if the initial data asymptotically vanishes as [xl+® , then the solution

will also be asymptotically periodic for t-e= .
4. SYSTEMS WITH SMALL LOWER ORDER COEFFICIENTS

Suppose that the coefficients A, ﬁ; C and D in (1) do not identically

vanish, but are small in the sense that

13



K, ﬁ; Cand D = o(l) .

Then the system (1) can be written in the form

(LA G s) ()

where e<<1 and now K;'E,.E, and D = 0(1). With side conditions (which are in
general independent of €), the solution of (23) may be obtained by a regular

perturbation scheme by formally seeking solutions of the form

1 2
= +e \ |1 + € 2 + ...
o \° v ¢
The governing system for (¢O,wo) is (in characteristic variables) simply

which according to statement 4 at the end of section 3 has a periodic solution

for vanishing initial data. In fact, from (12) and (21) if ¢(x=0)=exp(iwt) then

¢O(G,B) exp (iwB)

and

]
o

v° (o, B)

above the right running characteristic passing through the origin.

The governing system for (¢1,wl) is then

6% = -A(a-B)exp (iuf)
1 .
bg = ~Cla-Blexp (iw)

with ¢7(8,8)=0 and ¥' (a,0)=0. Then

14




1 a

¢ -exp (iwB) [A(E-B)dé
1 B

) - [C(a-n)em(iwn)dn

Note that ¢l is periodic, i.e. ¢l(a+T,B+T)=¢1(a,B), but wl is not. 1In fact

I

T
wl(a+T,B+T) =w1(a,s) +/C(a+T—n)eXP(iwn)dn.
(s}

If the process is continued, the solutions for ¢2 and wz will not be periodic.
Therefore we are led to the following results for the boundary value problem

with vanishing initial data:

periodic function + ez(non-periodic function)

-
]

periodic function + ¢ (non-periodic function)

<
1

For problems driven by a periodic source with vanishing initial data, both ¢
and ywill be non-periodic starting with the term proportional to . 1In
general, a problem governed by a system such as (23) has a solution whose lead-
ing term is periodic. In all cases this periodic term may be easily found by
ray tracing or following characteristics by solving the system (24).

It seems that if the coefficients of the undifferentiated terms of (1) are
small, one could conclude that the dominant term of the solution is periodic,
and that the non-periodicity is contained in a small perturbation term. How-
ever, it can easily be shown that this series solution in £ is not necessarily
uniformly valid in time, i.e. eil and/or ewl can grow in time and become
comparable to or dominate over the zeroth order term. Therefore, only for
those coefficients for which the non-periodic part of the solution does not

1
exhibit such growth, i.e. for ¢l and § such that

15




eot = 0™, et =o0w® ,

will the periodic part of the solution dominate over the non-periodic part.

It is usually the case that the signs of combinations of the coefficients
o . .

A, B, C and D determine whether or not ¢ and wo do indeed dominate over

€¢l and ewl, respectively.
5. COMPACT LOWER ORDER COEFFICIENTS

A very important class of problems are those for which the coefficients
A, B, C and D of (6) either vanish everywhere except for a bounded region or
decay asymptotically to zero as the distance from the origin increases.

Suppose these coefficients vanish except for a region near the origin

x<xo. In particular, for x>xO C=0 so that from (11) or (21)
v =0 for x > X, - (25)

for vanishing initial data.
In Figure 2, the point marked 1 is the intersection of the characteristic

curve a = constant with the line x=xo. The characteristic coordinates of this

point are

@ = and Bl = q - d(xo)

X (26)
d(XO) =‘/ dg[1/x(g) + 1/0(5)].

Q

where

Then from (11) and C=0 for x>x

b

B
b(a,B8)= - dnC(a-n)¢(a,n)exy D(a-n')dn' (27)
By (@) B

for x<xo and t large enough.

16




In Figure 3, the point marked 2 is the intersection of the characteristic
curve B = constant with the line x=xo. The characteristic coordinates of this

point are

B, = B and a, = B + d(xo) . (28)

Then, from (10) and A=B=0 for x>x0:

a,y (8) (8

q
3
A(E-B)di}em{iwﬁ}f dEB(E-B)W(«E,B)eXP{ S A(E'—B)dE'}
B

¢m,&=am{—
az(B)

B
(29)

for X>X . For X<x_, ¢ is given by (10).
The expression (29) for ¢ includes an integrand which depends on values
of v for x<xo. Then, by substituting (27) into (29)

az(B)

¢ (a, B)=exp -{./' A(E-B)d&} eXP{in,

B (30)

a,(8)

3 B n
+ dEB(E—B)eXP[/ A(E'-B)di'f dnC(E-n)¢(£,n)eXP( D(Z-n") dn"
B a, (8) B, (&) 2

for x>xo and t large enough.

From (26) and (28)

Bl(a+T) = Bl(a) + T

apd

oy (B4T) = a,(8) + T .

Then from (30)

17



az(B) £
[¢(a+T,s+T)—¢(a,B)]=[daB(a—B)exp;J A(a'-e)de's
J(e)
2

(31)

B n
>f dnC(&-n) [¢ (E+T,n+T)-¢ (E,1n) ] eXng D(E—n')dn’i
81(5) B

which is a homogeneous integral equation of the second kind. Therefore

¢ (a+T, 8+T) = ¢(a,B)

for x>xo and t large enough. This in turn implies that ¢ is periodic in time
with a period T=2r/w. Then (25) and (31) imply that the complete solution ¢
and ¢y of (6) is periodic in time with a period T.

In a similar manner, it can be shown that for x<xo both ¢ and ¢ are periodic
in time with a period T for large enough values of t. For both X<X and x>xo,
large enough time means that the point of intersection of characteristic
curves n = 0 and £ = B (which is the point marked 3 in Figures 2 and 3) lies
to the right of the line X=X . To accomplish this for a given x, one only has
to choose

X

dg
£ 3/0 o T - (32)

For t not satisfying (32), non-periodicity of the acoustic field can be shown
in a similar manner to that used in section 3.

Now consider the case of inhomogeneities that asymptotically vanish as x
increases. It is easy to see that for large enough t, ¢ will be asymptotically
periodic. The last term of (14) will then vanish because it then depends on

B and C evaluated for large values of x only. The shaded region in Figure 4 is

18




the region of integration for the last term of (14), and for any x, as t
increases this region moves to the right so that the values of B and C in
this region asymptotically vanish. Once the last term of (14) becomes very
small, (14) becomes similar to (31). Therefore, for any x, ¢ is asymptotically
periodic for large t. Likewise, it can be shown that for any x, ¢ is
asymptotically periodic for t large enough.

To summarize, it has been shown that if the coefficients A, B, C and D
vanish everywhere except in a region near the origin, then for any x the
solution field will be periodic if t satisfies (32). Moreover, if these co-
efficients vanish asymptotically for large !x|, then the solution field will
become asymptotically periodic for large t. Similar conclusions can be made

for the other boundary and/or source conditions discussed in section 2.
6. IMPLICATIONS FOR PHYSICAL PHENOMENA

The propagation of disturbances through nonuniform media are often governed
by hyperbolic systems of partial differential equations such as (1). Typically,
the coefficients A and ¢ in (1) depend on properties of the media such as the
speed of sound and if the media is a fluid, the fluid velocity. The co-
efficients A, B, C and'ﬁ'depend not only on the media properties, but also on
the gradients of these. In particular, these coefficients vanish with those
gradients. It is often, but not always, the case that the linearity of the
system of partial differential equations is a result of assuming that the pro-
pagating disturbances are small compared to the corresponding media properties.
In any case, the linearity of the system implies that the propagating disturbange
does not affect the basic media properties that enter into the coefficients

of the system.
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Problems dealing with the propagation of waves which are governed by
systems such as (1) arise in numerous branches of physics. The periodicity
assumption is a tool that is almost universally used to simplify the analysis
of such phenomena. Examples of areas where systems of equations similar to
(1) arise are, among others, the study of wave propagation through the
atmosphere [1], the ocean [2], electric and magnetic fields [3], layered
media [4], plasmas [5], elastic bars [3], etc. In all these cases, extensive
use is made of the periodicity assumption. Based on the results of sections
3, 4, and 5, we can reach some general conclusions about the periodicity of
disturbances and thus about the validity of the periodicity assumption.

These conclusions apply to any field in which the fluctuations are governed by
systems such as (1) and which are driven by periodic sources or boundary conditions.

1. If the non-uniformities of the media extend throughout space and have
gradients which are not 'small", the propagating fluctuations will in general
not be periodic;

2. If the gradients of the media properties are '"small" (compared to the
properties themselves), then in general the fluctuations will not be periodic.
However, there are situations in which the fluctuations are almost periodic
in the sense that non-periodic effects are small compared to a dominant periodic
fluctuation. It is usually the case that the signs of the gradients of the
media properties determine whether or not the periodic.fluctuations are indeed
dominant for all time;

3. If the gradients of the media properties and the prescribed initial
conditions vanish everywhere except for a compact region of space, then the
propagating fluctuations will, after some time, become periodic. There is no

restriction on the magnitude of these gradients in the region where they do not
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identically vanish. Furthermore, if these gradients and initial data

vanish asymptotically at large distances, then the fluctuations will become
asymptotically periodic for increasing time.

We now consider in greater detail one particular physical situation
where the above conclusions apply.
Propagation of pressure fluctuations through steady flows of Lossless (Luids

We first show that a system such as (1) may indeed govern the propaga-
tion of pressure fluctuations through one dimensional steady flow. All
model problems considered neglect any effects due to viscosity and heat
conduction. For simplicity, it is assumed that the media is a perfect gas,
although this assumption is by no means necessary. Throughout the mean flow
will be denoted by subscript o, and the acoustic perturbation by variables
without subscript. The pressure is denoted by p, the density by p, the speed
of sound by c, and the velocity by u.

For a one dimensional moving inhomogeneous medium (with area change), the

equations governing the propagation of sound are given by:

3p du
3p 2 3u . 3p 01ty o a 24 _
ot + poco 9% +uo 9x +{u X I+ly Ix ]+[pYuo dx(lns}hx%co dx(lns>] 0
(33)
and
3p 3u
3u 1 3 3u _p_“Po Yo,
ot + po 9X + uo 9x [poco % 1+ [u X ] 0

where y is the constant ratio of specific heats and S=S(x) is the cross-
sectional area. In each equation the first bracketed term is due to the pressure

gradient of the mean flow, the second is due to the velocity gradient
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of the mean flow, and the third is due to the change in cross-sectional
area. Equation (33) is valid so long as the mean flow is time independent
and the source or boundary disturbance is acoustic in nature, e.g. is a
pressure source and not an entropy source.

The system (33) can be simplified by imposing restrictions on the mean
flow. For instance, if the medium is at rest with constant pressure (uo=0,
po=constant) and the cross-sectional area is constant (S=constant), only the
first two terms in each equation fail to vanish. 1In fact, the two equations

may be combined to yield the familiar

2
3%p _ .28 (AL 3py_
5¢2 Po% Bx (po Bx) -

Other simpler systems of interest are ones for flows at rest with constant
entropy (uo=0, pop;Y=constant) and flows with no area change (S=constant).

In the characteristic variables

©-
1

+
P QOCOU

and (34)

Yy =p-pcCcu
Y P oo

the system for uo=0, p0=constant and S=constant becomes

3
(4’ +c (l O><¢) + a—c~ (l _l) "\ = o (35)
v/, ° \o -1/\y . X 1 -1/\v

For uo=0, S=constant and constant entropy, the characteristic system is

ro [
o]
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) (l 0)(¢ 1 Bco -y=-1 y-3 )
(w c T % \o -1 ¥ + 2(y-1) °x ( 3-y Y+1) (w) =0 (36)

For the full system (35), the characteristic system is

¢ . (uo+co 0 $ L1) 1 a_cg(—y—l Y_3>+mf_93°o (—1 1)
Y e 0 u-c, ¥ x 23 (y-1) 9x 3-y v+l v-1 c, 3x 1 -1

(37

2 (5 T (2 () e
o o o o
For any other specialized mean flow, an appropriate system can be found from
(37). It is obvious that all three systems (35), (36) and (37) are of the same
form as (1).

The important thing to note is not the differences in the systems (35) -
(37), but rather their similarities. The most important similarity is that for
the characteristic dependent variables, all systems will have a term involving
undifferentiated values of ¢ and ¢ . This is true even for the extremely
simple case of system (35). The only exception is when all gradients vanish,

i.e., uo, Co and S are constant, in which case (37) becomes

o u +c 0 ¢ ‘
(_}) + ( °0 ° ) () =0 (38)
g t uo-co v X

regardless of whether u0=0 or u0=constant. Therefore, the essential simplifi-

cation is not u0=0, but rather zero gradients since it was seen in section 3
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that it is precisely those terms which appear in (35), (36), or (37) and

not in (38) which can bring about the non-periodicity of the solution. It

is also clear that any restrictions made on the coefficients K, E} C and D

in (1) are from (37) restrictions on the gradients of the media properties

Cyr Uy and S. In particular, if'X, etc. vanish everywhere except for a
bounded region of space then it must be that the fluid is uniform and is
moving at a constant velocity everywhere except for a bounded region of space.
A similar analogy holds for the case of A, etc., vanishing asymptotically

for large distances. This last situation is of particular importance since
in many physical situations, such as jets (see [6,7]), the media non-

uniformities do indeed decay in such a manner.
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Figure 1. Characteristic geometry and the curve t=t*(x).
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Figure 2. Characteristic geometry for (x,t) such that X<X -
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Figure 3. Characteristic geometry for (x,t) such that XX .
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Figure 4. Regions of integration for points one period apart.
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